
Topic 7
Inheritance and
Introduction to
Event-driven
Programming

ICT167 Principles of

Computer Science

© Published by Murdoch University, Perth, Western Australia, 2020.

This publication is copyright. Except as permitted by the Copyright Act no part of it

may in any form or by any electronic, mechanical, photocopying, recording or any

other means be reproduced, stored in a retrieval system or be broadcast or

transmitted without the prior written permission of the publisher

3

§ Define inheritance and polymorphism

§ Be able to give examples of uses of

inheritance

§ Be able to use the correct terminology for

inheritance (base class and derived class)

§ Understand inheritance between Java

classes

§ Explain the concept of overriding of

methods

§ Distinguish between overriding and

overloading

Objectives

4

§ Explain the use of the term super in a

constructor

§ Understand a class hierarchy

§ Know that a derived class object can have a

super class reference

§ Be able to define and use derived classes

in Java

§ Understand the concept of multiple

inheritance

§ Understand Java interfaces

Objectives

5

§ Understand the basics of event-driven

programming

§ Explain the term GUI

§ Give a brief description of the Java Swing

event-driven programming

§ Be able to determine and explain the

behaviour of simple Java GUI programs

Reading Savitch: Chapters 8.1, 8.2, 8.3 and

Chapter 13 (see textbook website)

Objectives

6

§ Inheritance enables us to define a new class

based on a (general) class that already

exists

§ The new class will be similar to the existing

class, it will be able to use all the facilities of

the existing class, but will have some new

characteristics

§ This makes programming easier, because

you can build upon your previous work

instead of starting out from scratch

Inheritance

7

§ In Java it is easy to code the more

specialized class without having to re-write

any of the code which it inherits from the

more general class

§ Inheritance is a powerful and very useful

feature of OOP

§ Graphical user interfaces (GUIs) define each

visual component by using inheritance with a

"toolkit" of basic components

Inheritance

8

§ For example in the libraries:

§ Buttons inherit from Components

§ Labels inherit from Components

§ FileNotFoundException inherits from

IOException

§ HttpURLConnection inherits from

URLConnection

§ Time inherits from Date

§ Set inherits from Collection

Inheritance

9

§ Example in possible applications,

§ ReferenceBook inherits from LibraryBook

§ UnderGraduateStudent inherits from Student

§ Secretary inherits from Employee

§ CreditCardCustomer inherits from Customer

Inheritance

10

§ The class that is used as a basis for
defining a new class is called the base

class (or super class or parent

class)

§ The new class based on the base class

is called a derived class (or sub-

class or child class)

§ We say, the derived class inherits from

the base class

Terminology

11

§ In Java, (unlike with humans) child classes

inherit characteristics from just one parent

§ This is called single inheritance

§ Some languages allow child classes to

inherit from more than one parent

§ This is called multiple inheritance

Terminology

12

§ With multiple inheritance, it is

sometimes hard to tell which parent class

will contribute what characteristics to the

child class

§ Java avoids these problems by using
single inheritance

Terminology

13

// A Base Class: Person.java (from Savitch chapter 8)

public class Person {

private String name; // instance variable

public Person() { // constructor

name = "No name yet.";

}

// another constructor

public Person(String initialName) {

name = initialName;

}

public String getName() { // get method

return name;

}

Example: Base Class

14

// set method

public void setName(String newName) {

name = newName;

}

public void writeOutput(){ // output method

System.out.println("Name: " + name);

}

// equal method

public boolean sameName(Person otherPerson) {

return (this.name.equalsIgnoreCase(

otherPerson.name));

}

} // end class Person

Example: Base Class

15

// A Derived Class: Student.java from Savitch chapter 8

public class Student extends Person {

private int studentNumber; // instance variable

public Student() { // default constructor

//call to default constructor of super class Person

super();

studentNumber = 0; // Indicating no number yet

}

Example: Derived Class

16

// Another constructor

public Student(String initialName,

int initialStudentNumber) {

// call to other constructor of super class Person

super(initialName);

studentNumber = initialStudentNumber;

}

public void reset(String newName,

int newStudentNumber) {

// call to the super class method

setName(newName);

studentNumber = newStudentNumber;

}

Example: Derived Class

17

public int getStudentNumber() {

return studentNumber;

}

public void setStudentNumber(int

newStudentNumber) {

studentNumber = newStudentNumber;

}

public void writeOutput() {

System.out.println("Name: " + getName());

System.out.println("Student Number : " +

studentNumber);

}

Example: Derived Class

18

public boolean equals(Student otherStudent) {

return (this.sameName(otherStudent)

&& (this.studentNumber ==

otherStudent.studentNumber));

}

} // end class Student

Example: Derived Class

19

// InheritanceDemo.java - a client program

public class InheritanceDemo {

public static void main(String[] args) {

Student s = new Student();

s.writeOutput();

// setName is inherited from the Person class

s.setName("Jason Bourne");

s.setStudentNumber(12345678);

s.writeOutput();

Example: Client Class

20

Student s1 = new Student("James Bond", 007);

s1.writeOutput();

if (s.equals(s1))

System.out.println("Same");

else

System.out.println("Not Same");

}

} // end class InheritanceDemo

Example: Client Class

21

/* OUTPUT

Name: No name yet.

Student Number : 0

Name: Jason Bourne

Student Number : 12345678

Name: James Bond

Student Number: 7

Not Same

*/

Example: Output

22

§ In the above example (consisting of two useful classes

and a client) notice the following:

§ Person is the base class (or super class)

§ Student is derived from the base class

§ We also say, Student inherits from Person, or,

Student extends Person

§ The most important thing to note is that each
Student object (like any other Person object) has a
name and has methods such as setName(…) and

getName() available to it

§ This is inheritance

Overriding Methods and
super Constructors

23

§ Each Student object also has an extra

instance variable studentNumber

§ An object of type Student has the following

members in it:

Overriding Methods and
super Constructors

24

Member Explanation

name inherited from Person

studentNumber defined in Student

setName(…) inherited from Person

getName() inherited from Person

sameName(…) inherited from Person

reset(…) defined in Student

getStudentNumber() defined in Student

setStudentNumber (…) defined in Student

writeOutput() redefined in Student

equals(…) defined in Student

Overriding Methods and
super Constructors

25

§ Also note that where the derived class has

a method with exactly the same name and

the same number, order and types of
parameters as a method in the base class

then the derived class method will be used
for a derived class object

§ Eg: the method writeOutput() in Student

class above

§ This is called overriding

Overriding Methods and
super Constructors

26

§ Also note that since a Student is a type of Person

then a new Student object must be set up properly as

a Person first

§ In general, a constructor for the super class must be

called as part of the activity of a constructor for the
derived class. If you do not specify which super
constructor to call by writing super(arg1, ...,

argn) in the derived class constructor then the

default constructor is called automatically

Overriding Methods and
super Constructors

27

§ The class definition for Person has two

constructors, one of which will initialise the
member data of Person objects

§ The class Student also has two

constructors that initialise the data of
Student objects

§ The second constructor for class Student

looks like following:

Overriding Methods and
super Constructors

28

// another constructor

public Student(String initialName,

int initialStudentNumber) {

// call to the constructor of superclass

super(initialName);

// initialise the member that only Student has

studentNumber = initialStudentNumber;

}

Overriding Methods and
super Constructors

29

§ The statement super(initialName)

invokes the super class's constructor to

initialize some of the data

§ The next statement initializes the member
that only the Student has

§ Note that when super is used as above, it

must be the first statement in the derived

class's constructor

Overriding Methods and
super Constructors

30

§ Sometimes you want a derived class to

have its own method, but that method
includes everything the base class does

§ You can use the super reference in this case

§ For example, here is class Person's method:

WriteOutput()

public void writeOutput(){

System.out.println("Name: " + name);

}

Overriding Methods and
super Constructors

31

§ And here is Student's method:
public void writeOutput(){

System.out.println("Name: "+getName());

System.out.println("Student Number:"

+ studentNumber);

}

Overriding Methods and
super Constructors

32

§ Student's method can better be written

using super:

public void writeOutput(){

super.writeOutput();

System.out.println("StudentNumber:"

+ studentNumber);

}

Overriding Methods and
super Constructors

33

§ Note: Unlike the case when super is used in

a constructor, inside a method super does

not have to be used in the first statement

§ Note that you can form a new class from a
derived class and can build inheritance to

multiple levels

§ Eg: class Undergraduate is derived from

Student (see textbook Listing 8.4)

Overriding Methods and
super Constructors

34

§ It is possible to specify that a method

cannot be overridden in a sub-class by

adding the final modifier to the method

heading

§ Eg:

public final void specialMethod()

{

// method body

}

The final Modifier

35

§ An entire class may be declared as final,

which means it cannot be used as a base class

to derive another class

§ Eg: the Java API class String is declared as
final

public final class String extends Object

{

.

}

The final Modifier

36

Class Hierarchies

Figure 8.1 A class hierarchy

UML Inheritance Diagrams

• Figure 8.2 A class

hierarchy in

UML notation

UML Inheritance Diagrams

• Figure 8.3

Some details

of UML class

hierarchy

from

figure 8.2

39

Class Hierarchies

40

§ The diagram on the previous slide shows a

hierarchy of classes

§ In this class hierarchy, many methods and

instance variables may be inherited
downwards from super class to derived

class

§ Java supports this easily

§ In a hierarchy, each class has at most one
base class (super or parent), but can have

several derived (sub or child) classes

Using Inheritance

41

§ Now in the above hierarchy, every driller or

a first-aid person is also an employee

§ Thus every object of the class Driller is

also an object of the class Employee

§ One of the most useful aspects of
inheritance is that a derived class object

can be used wherever a super class object

can be

Using Inheritance

42

§ Eg:

Date today = new Date();

Employee emp = new Employee();

emp = userChooseEmployee();

System.out.println(“You have chosen to retire

the following employee”);

emp.writeName();

System.out.println(“Are you sure(yes/no)?”);

Scanner kb = new Scanner (System.in);

String reply = kb.next();

Using Inheritance

43

if (reply.equals(“yes”)){

emp.FinalizeRecords(today);

} else {

System.out.println(“Request ignored.”);

}

System.out.println(“End of this request.”);

§This will work no matter whether emp refers to

a Driller or a FirstAid object etc.

Using Inheritance

Polymorphism

• Inheritance allows you to define a base class

and derive classes from the base class

• Polymorphism allows you to make changes in

the method definition for the derived classes

and have those changes apply to methods

written in the base class

• You will need to read more in the textbook

under Chapter 8.3

Polymorphism

• Consider a program uses

Person, Student, and

Undergraduate classes

• E.g. if we want to set up a list of

committee members (can be a

person who are student or

employee), it is better make an

array of type Person

• Array of type Person can

accommodate any class derived

from it

Polymorphism

• Consider an array of Person

Person[] people = new Person[4];

• Since Student and

Undergraduate are types of

Person, we can assign them to

Person variables
people[0] = new

Student("DeBanque, Robin",

8812);

people[1] = new

Undergraduate("Cotty, Manny",

8812, 1);

Polymorphism

• Given:

Person[] people = new Person[4];

people[0] = new Student("DeBanque, Robin",

8812);

• When invoking:

people[0].writeOutput();

• Which writeOutput() is invoked, the one defined

for Student or the one defined for Person?

• Answer: The one defined for Student

An Inheritance as a Type

• The method can substitute one object for

another

– Called polymorphism

• This is made possible by mechanism

– Dynamic binding

– Also known as late binding

Dynamic Binding and Inheritance

• When an overridden method invoked

– Action matches method defined in class used to

create object using new

– Not determined by type of variable naming the

object

• Variable of any ancestor class can reference

object of descendant class

– Object always remembers which method actions

to use for each method name

Polymorphism Example - listing 8.6
public class PolymorphismDemo

{

public static void main(String[] args)

{

Person[] people = new Person[4];

people[0] = new Undergraduate("Cotty, Manny", 4910, 1);

people[1] = new Undergraduate("Kick, Anita", 9931, 2);

people[2] = new Student("DeBanque, Robin", 8812);

people[3] = new Undergraduate("Bugg, June", 9901, 4);

for (Person p : people)

{

p.writeOutput();

System.out.println();

}

}

}

Even though p is type Person, the

writeOutput method associated with

Undergraduate or Student is invoked

depending upon which class was used to

create the object

Dynamic binding

Polymorphism

Polymorphism Example

• Output

52

§ Occasionally, the natural description of a

problem suggests a different form of

inheritance, not like an upside down tree

§ For example, a postgraduate tutor may be both

a staff member and a student

§ We may need methods to deal with paying them

for taking lab classes, and methods for dealing

with their student number, HECS fees and unit

results

§ We want to inherit these methods from different
super classes

§ This is called multiple inheritance

Multiple Inheritance

53

Multiple Inheritance

54

§ O-O languages get confused with multiple

inheritance

§ Eg: if a postgrad tutor changes their office phone
number, do we use the changeOfficePhone

method supplied in the Staff class or in the

Postgrad class?

§ Some O-O languages provide ways to deal

with this

Java Interfaces

55

§ Java does not allow multiple inheritance

except in a very special case:

§ One of the super classes must be an interface,

which is like a class with methods with no

bodies. (Do not confuse two uses of the word in

this topic)

§ A Java interface is a collection of constants

and method declarations

§ The method declarations do not include an

implementation (i.e. there is no method body)

Java Interfaces

56

§ A derived class that extends a base class

can also implement an interface to gain

some additional behaviour

§ An interface definition has the following

general form:
// File: InterfaceName.java

public interface InterfaceName {

constant definitions

method declarations (without

implementations)

}

Java Interfaces

57

§ A class definition then implements an

interface as follows:

public class SomeClass extends

SomeParent implements

InterfaceName

{

// body of the class SomeClass

}

§ You will know that an interface is involved if

you see the word implements which is used

instead of extends for interfaces

Java Interfaces

58

§ Eg:

public class ButtonDemo extends JFrame

implements ActionListener

§ Here we do not inherit any code from

ActionListener except the ability to treat

ButtonDemo objects as ActionListener

Objects

Java Interfaces

59

§ A Graphical User Interface (GUI) is a system of visible

components (such as windows, menus, buttons, text

fields) which allow a program to interact with a user
§ Modern programs use these windowing interfaces

to allow the user to make choices with a mouse

§ Swing is a package that comes with Java 2, and

contains classes for creating these sorts of

components (graphics) and other classes which help
them to be used (GUI programming)

The Swing Package and

GUI Programming

60

§ GUI programming, i.e. writing programs that

set up and use GUIs, is complicated (but

made much easier by the swing library)

§ The swing library makes extensive use of

inheritance

§ Swing can be viewed as an improved

version of an older package called the

Abstract Windows Toolkit (AWT)

The Swing Package and

GUI Programming

61

§ Also, designing and implementing a GUI

using the swing (and AWT) requires skill at

event-driven programming

§ That is, a certain way of programming which

makes use of objects representing events such

as mouse click, keyboard press, windows

becoming visible, etc.

§ GUI programming is advanced and we just

give a brief overview here

The Swing Package and

GUI Programming

62

§ GUIs in Java are often managed by special

programs called Applets which run in

Internet browsers

§ Setting up an applet is easy (and you will see

this in many other units)

§ Programming the working of an applet is much

the same as programming a GUI application (i.e.

a non-applet GUI program) and needs the same

understanding of inheritance, the swing library

and event-handling

The Swing Package and

GUI Programming

63

§ What the user sees is determined by what

visible swing components the programmer

"adds" to a frame (JFrame object).

§ In Java, a frame is a window that has a

border, a place for a title, various buttons

along the top border (eg: close button), and

other built-in things

§ What we usually call a "window" Java calls a

"frame"

Brief Overview of

Java Event Handling

64

§ The layout of the frame (window) is

controlled by the programmer and a layout

manager object

§ The user interacts with the application by:

§ Clicking on a window's close button

§ Clicking on a button to choose one of the

program's options

§ Making a choice from a menu

§ Entering text in a text field

Brief Overview of

Java Event Handling

65

§ When you perform an action (like mouse-

clicking, keyboard presses) on a graphical

component you generate an event

§ In event-driven programming the program

responds to events

§ The program responds to events that occur:

§ Whenever the user chooses, and

§ In whatever order the user chooses

Brief Overview of

Java Event Handling

66

§ Events are said to be fired by the

component which they happen to

§ The events will not cause anything else to

happen unless a listener object has been

added to the firing component

§ Zero, one or more listening objects can be

added

§ Eg: in swing every object that can fire

events, such as a button that might be

clicked, can have one or more listener

objects

Brief Overview of

Java Event Handling

67

§ If an event is fired then all the listening

objects attached to the firing object are

notified

§ The listening object can have a method

which says what to do if that particular event

is fired

§ This method is called an event handler

§ The programmer defines these event-

handler methods

Brief Overview of

Java Event Handling

68

§ Most swing objects have methods for

getting or setting their properties like what

text is written on them or whether they are

clickable etc.

§ Check on-line documentation for details

§ Event handlers can change the component’s

properties, or remove or add components,

or listeners, or do some calculation, or

change the whole look of the GUI or close

the whole program down

Brief Overview of

Java Event Handling

69

§ Thus a GUI program consists of three types

of software:

§ Components that make up the Graphical User

Interface

§ Listeners that receive the events and respond to

them

§ Application code that does useful work for the

user

Brief Overview of

Java Event Handling

70

§ A GUI program consists of a collection of

graphical components that are all placed

inside one or more windows - called

container objects

§ A frame (JFrame) object is a container

object, so GUI components can be placed in

it

Brief Overview of

Java Event Handling

71

§ Like all software objects, a frame-object is

actually a section of main memory that holds

information and methods

§ The Java system, with the help of the

operating system and the graphics board,

paints a picture on the computer monitor

that represents the frame

Brief Overview of

Java Event Handling

72

§ The GUI components are – windows,

labels, text fields or text areas, buttons, etc.

§ The components (labels, text areas/text

fields and buttons) are added to the content

pane (the area below the title bar and

inside border) of a window and not to the

window itself

§ All GUI components are objects in Java

and therefore are instances of a particular

class type

GUI Components

73

§ Below are some of the GUI components

which can be created from swing classes
(contained in package javax.swing):

§ JLabel – an area where un-editable text or

icons can be displayed

§ JTextField – an area in which the user

inputs data from the keyboard

§It can also display information

§It can have only one line of text

GUI Components

74

§ JTextArea – an area as in JTextField

above

§It can have many lines of text

§ JButton – an area that triggers an event when

clicked with the mouse

§ JPanel – a container in which components

can be placed and organized

GUI Components

75

§ The GUI component window can be
created using an instance of JFrame class

§ The swing library class JFrame provides

various methods to control attributes of a

window

§ The attributes associated with windows are:

§ Title

§ Width and height (in pixels)

Windows

76

§ Some methods provided by the JFrame

class:

§ JFrame(String title)

§Constructor for creating a JFrame with a title

§ Container getContentPane()

§Returns the content pane of the JFrame, which has

the add method for adding components

§ void setSize(int width, int height)

§Method to set the size of the window

§Eg: myWindow.setSize(500, 300);

§ void setTitle(String title)

§Method to set the title of the window

Windows

77

§ Some methods provided by the JFrame class:

§ void setVisible(boolean b)

§Method to display window in the program

§Displays window on the screen if b is true

§ public void addWindowListener(WindowEvent e)

§Method to register a window listener object to a

Jframe

§ public void setDefaultCloseOperation (int operation)

§Method to determine action to be taken when the

user clicks on window closing button, x, to close the

window

§Eg:
setDefaultCloseOperation(EXIT_ON_CLOSE)

;

Windows

78

§ Some methods provided by the JFrame

class:

§ void setBackgroundColor(Color c)

§ void setForegroundColor(Color c)

Windows

79

§ There are two ways to create a window in an

application:

§ The first way:

§ Declare object of type JFrame

§ Instantiate the object using new

§ Use various methods to manipulate window

Windows

80

§ Alternatively:

§ Create the class containing the application

program by extending definition of class
JFrame using inheritance

§ The new class can use features such as

methods it inherits from the existing class
(JFrame), and can add some functionality of it

own

Windows

81

Control Pane

§ Content Pane is the inner area of GUI a

window (below the title bar and inside the

border)

§ GUI components are added to the content

pane through a container class

§ To access the content pane:

§ Declare reference variable of type Container

§ Use method getContentPane of class

JFrame

82

Control Pane

§ Eg:

Container c1;

c1 = getContentPane();

§ or,

Container c1 = getContentPane();

§ In order to design the layout to decide where

to place the GUI components in the content
pane, the class Container provides the

method setLayout

83

Control Pane

§ The components can be added/attached to
the content pane by using method add of the

Container class

§ The class Container is contained in the

package java.awt

§ To use this class in your program, you need

to include either the statement:

import java.awt.*;

§ or

import java.awt.Container;

84

Labels

§ A label is a special kind of text that can be
added to a JFrame (or to any of a number of

other kinds of objects)

§ It provides instruction or information on a

GUI

§ It displays a single line of read-only text, an

image or a mixture of both

§ Labels are created by instantiating objects
of class Jlabel (which is contained in the

package java.swing)

85

Labels
§ Eg: Give a string as an argument to the

constructor for the JLabel class:

JLabel label1;

label1 = new JLabel(“Please don’t

click that button!”);

c1.add(label1,BorderLayout.CENTER);

§ Eg: set string describing label2 as right-

justified

JLabel label2;

label2 = new JLabel(“Enter your

name:”,

SwingConstants.RIGHT);

86

Text Fields and Text Areas
§ Text fields (objects of class JTextField) are

single-line areas in which the user can enter

text (via keyboard) or the program can

display text

§ When the user enters data into a text field

and presses the Enter key, an action event

(ActionEvent) occurs

§ If the program has registered an event

listener, the listener will process the event

enabling the program to use the data

entered in the text field

87

Text Fields and Text Areas

JTextField mytext;

mytext = new JTextField(50);

§ This statement instantiates the object
mytext and sets the width of this text field to

50 characters

§ The object mytext will be added to the

content pane using the add method of

Container class

88

Text Fields and Text Areas
§ Some methods provided by JTextfield class:

§ public JTextField(int size)

§Constructor to set the size of the text field

§ public JTextField(String str)

§Constructor to initialise object with text specified by

str

§ public void setText(String str)

§Method to set text of text field to string specified by

str

§ public String getText()

§Method to return the text contained in the text field

§ public void addActionListener(ActionListener e)

§Method to register a listener object to a JTextField

89

Text Fields and Text Areas

§ Text areas (objects of class JTextArea) are

areas in which the many lines of text can be

entered and/or displayed

§ Eg:

JTextArea text2 = new JTextArea(10,

50);

§ text2 is big enough to hold 10 lines, where

each line can hold up to 50 characters

90

Text Fields and Text Areas

§ Similar methods, as those in JTextField

class, are also available in JTextArea class

§ Eg: getText(), setText(String str),
addActionListener(ActionListener e)

§ The text fields/areas are then added to the
content pane of a window using the add

method and a layout manager

91

Buttons

§ A button (created with class JButton) is a

component the user clicks to trigger an
action (ActionEvent). The text on the face of

a button is called button label

§ An ActionEvent can be processed by any

ActionListener object

§ To create a button, we use the same

techniques as creating labels and text fields

92

Buttons
§ Some methods provided by the class

JButton:

§ public JButton(String str)

§Constructor to initialise the object to text specified

by str

§ public void setText(String str)

§method to set text of the button to string specified

by str

§ public String getText()

§method to return the text contained in button

§ public void addActionListener(ActionListener e)

§method to register a listener object to the button
object

93

Layout Managers

§ Layout Managers are objects that decides

how components will be arranged in a

container

§ Some types of layout managers:

§ BorderLayout

§ FlowLayout

§ GridLayout

§ Each type of layout manager has rules about

how to rearrange components when the size
or shape of the container changes

94

The Border Layout Manager

§ It has five regions that can each have one

component added to them:

c1.setLayout(new BorderLayout());

. . .

c1.add(label1, BorderLayout.NORTH);

BorderLayout.NORTH

BorderLayout.WEST BorderLayout.CENTE

R

BorderLayout.EAST

BorderLayout.SOUTH

95

§ Flow is the simplest layout manager; it

display’s components from left to right in the

order they are added to the container

§ The add method has one parameter which is

the component to add
Container c2 = getContentPane();

C2.setLayout(new FlowLayout());

JLabel label1=new JLabel(“1st label here”);

C2.add(label1);

JLabel label2=new JLabel(“2nd label there”);

C2.add(label2);

The Flow Layout Manager

96

§ The programmer specifies the number of

rows and columns in the grid

§ All regions in the grid are of equal size

§ When the container changes size, each

region grows or shrinks by the same amount

The Grid Layout Manager

97

§ The following example creates a grid layout

with two rows and three columns:

Container c3 = getContentPane();

c3.setLayout(new GridLayout(2, 3));

. . .

c3.add(label1);

c3.add(label2);

§ Note that the rows are filled before columns

in the grid

The Grid Layout Manager

98

Handling an Event
§ When button (JButton) is clicked, an event

is created – called action event

§ Action event sends a signal to another

object, known as action listener

§ When the listener receives the message, it

performs some action

§ Sending a message or an event to a listener

simply means that some method (eg,
actionedPerformed) in the listener object is

invoked with the event as the argument

99

Handling an Event
§ This invocation happens automatically –

there is no code corresponding to the

method call

§ However, you must specify two things:

§ For each JButton, you must specify a

corresponding listener object – called

registering the listener

§ You must define the methods that will be called

when the event is fired (i.e., sent to the listener)

§ Java does not allow us to instantiate an
object of type ActionListener

100

Class ActionListener
§ The class ActionListener (part of the

package java.awt.event) handles action

events

§ It is a special type of class called an

interface and contains the method
actionPerformed

§ An interface is a class that only contains the

method headings (terminated with a

semicolon) and not their

definitions/implementations

§ Java does not allow us to instantiate an
object of type ActionListener

101

Class ActionListener
§ One way to register an event is to create a

class on top of ActionListener so that the

required object can be instantiated

§ Eg:
private class MyButtonHandler implements

ActionListener {

public void actionedPerformed

(ActionEvent e){

//Code for tasks to be performed go here

}// end actionedPerformed

}// end class MyButtonHandler

102

Example: SimpleApp

//SimplApp.java - a simple example of a GUI program

//You should be able to give a brief description of what

//such a program will do and the steps involved

import javax.swing.*; //for JFrame, JButton, JLabel

import java.awt.*; //for Container, BorderLayout

import java.awt.event.*; //for WindowAdapter,

ActionListner, ActionEvent

public class SimplApp extends JFrame {

// define window's width and height in pixels

private static final int WIDTH = 400;

private static final int HEIGHT = 200;

103

Example: SimpleApp

// used for displaying text in the window

private JLabel infoLabel;

private class ButtonAction implements

ActionListener {

public void actionPerformed(ActionEvent e){

infoLabel.setText("You fool !!");

} //end of actionPerformed

} //end of class ButtonAction

104

Example: SimpleApp

// used to destroy/close the window

private class WindowDestroyer extends

WindowAdapter {

public void windowClosing(WindowEvent e){

dispose();

System.exit(0);

} //end of windowClosing()

} //end of class WindowDestroyer

105

Example: SimpleApp
// Below is the constructor for the class SimplApp

public SimplApp(String windowTitle) {

super(windowTitle);

setSize(WIDTH, HEIGHT);

// create content pane to add components to

window

Container c1 = getContentPane();

c1.setLayout(new BorderLayout());

// create a label component with the String

centred

infoLabel = new JLabel("Initial",

JLabel.CENTER);

c1.add(infoLabel, BorderLayout.CENTER);

106

Example: SimpleApp

// create a button component

JButton button1=new JButton("Don't Press

Me!");

c1.add(button1, BorderLayout.NORTH);

//goes at top

// add an action event to button

ButtonAction myAction = new ButtonAction();

button1.addActionListener(myAction);

// add action event to window close button

WindowDestroyer myListener = new

WindowDestroyer();

addWindowListener(myListener);

} //end of SimplApp constructor

107

Example: SimpleApp

public static void main(String[] args) {

// calls constructor

SimplApp app = new SimplApp("Zzzz");

// display window on the screen

app.setVisible(true);

System.out.println("Finished

SimplApp.main()");

} //end of SimplApp.main()

} //end of SimplApp class

108

Example: BinarySearch

// BinarySearch.java revised (by P S Dhillon) from

Deitel and Deitel

// Binary search of an array

import java.awt.*;

import java.awt.event.*;

import javax.swing.*;

import java.text.*;

public class BinarySearch extends JFrame

implements ActionListener {

JLabel enterLabel, resultLabel;

JTextField enterField, resultField;

109

Example: BinarySearch

JTextArea initial, output;

int arr[];

String display = "";

public static void main (String[] args) {

BinarySearch myApplication = new
BinarySearch("Binary Search");

myApplication.setVisible(true);

myApplication.setDefaultCloseOperation(
EXIT_ON_CLOSE);

} // end main

110

Example: BinarySearch

// constructor for BinarySearch

public BinarySearch(String title) {

super (title);

setSize(800, 300);

Container c = getContentPane();

c.setLayout(new FlowLayout());

// set up JLabel and JTextField for user input

enterLabel = new JLabel("Enter an integer

key to search");

c.add(enterLabel);

111

Example: BinarySearch

enterField = new JTextField(5);

enterField.addActionListener(this);

c.add(enterField);

// set up JLabel and JTextField for displaying

results

resultLabel = new JLabel("Result");

c.add(resultLabel);

resultField = new JTextField(20);

resultField.setEditable(false);

c.add(resultField);

112

Example: BinarySearch

// create array and fill with odd integers 1 to 29

arr = new int[15];

for (int i = 0;i < arr.length;i++)

arr[i] = 2 * i + 1;

// set up JTextArea for displaying the array

contents

JTextArea initial = new JTextArea(3,60);

c.add(initial);

113

Example: BinarySearch

// build the initial array for displaying

String arrayContents=“Contents of array:\n";

for (int i = 0;i < arr.length;i++)

arrayContents = arrayContents + (arr[i])

+ " " ;

initial.setText(arrayContents);

// set up JTextArea for displaying comparison

output = new JTextArea(10,60);

c.add(output);

} //end of constructor

114

Example: BinarySearch

// obtain user input and call method binSearch

public void actionPerformed(actionEvent e) {

String searchKey = e.getActionCommand();

// initialize display string for the new search

display = "Portions of array searched:\n";

// perform the binary search

int index = binarySearch(arr,

Integer.parseInt(searchKey));

output.setText(display);

115

Example: BinarySearch

if (index != -1)

resultField.setText("Value found at

index " + index);

else

resultField.setText("Value not found");

}//end of actionPerformed method

116

Example: BinarySearch

public int binarySearch(int ar[], int key) {

int first = 0;

int last = ar.length - 1;

int mid;

while (first <= last) {

mid = (first + last)/2;

// The following line is used to display the part

// of the array currently being manipulated

// during each iteration of the binary search loop.

buildOutput(first, mid, last);

117

Example: BinarySearch

if (key == ar[mid]) // match found

return mid; // exit

else if(key < ar[mid])

// search low end of array

last = mid - 1;

else //search high end of array

first = mid + 1;

}// end while

return -1; // match not found

}// end binarySearch

118

Example: BinarySearch

// Build one row of output showing the current

// part of the array being processed.

void buildOutput(int low,int mid,int high) {

DecimalFormat twoDigits = new

DecimalFormat("00");

for (int i = 0;i < arr.length;i++) {

119

Example: BinarySearch

if (i < low || i > high)

display = display + " ";

else if (i == mid) //mark middle element

display = display + twoDigits.format(

arr[i]) + "* ";

else

display = display + twoDigits.format(

arr[i]) + " ";

} // end for

display = display + "\n";

}// end of buildOutput

}//end of class

End of Topic 7

